## Hydraulic System

force magnification

## Our aim(=Ziel).....

We want to raise up a heavy book, but to use only a fourth of the weight force of the book.



## Hydraulic Pump



Piston (=Kolben), moved by air/water

Valve (=Ventil ) for air/water going IN

Valve for air/water going OUT

## Hydraulic Cylinder

Piston moved by water/air



Valve for air/water going IN/OUT

Valve for air/water going OUT/IN

## Physical background

- Pressure in ideal (non-viscous) fluids (e.g. water)
- Neglection of fluid weight
- → Pressure p is the *same* in pump, cylinder and hose (=Schlauch)!



## Let's go!!

3.Book is raised up by the pump



1.press

2. Water flows through the hose

## What is the secret behind the experiment?

#### Pressure p = const.

- \* Force F = pressure p \* area A
- \* Force on piston (=Kolben) F<sub>piston</sub> = p \* A<sub>piston</sub>
- \*  $A_{piston,pump} = 4 * A_{piston,cylinder}$
- $\rightarrow$  F<sub>piston,pump</sub> = 4 \* F<sub>piston,cylinder</sub> (the force is magnified *four times*)

### Work = Force times path = F \* s = const.

- \*  $F_{piston,pump}$  \*  $S_{piston,pump} = F_{piston,cylinder}$  \*  $S_{piston,cylinder}$
- \*  $S_{piston,cylinder} = (F_{piston,pump} / F_{piston,cylinder}) * S_{piston,pump} = 4 * S_{piston,pump}$
- \* (but the cylinder needs to be moved *four times more* than the pump is moving)

## How to do the experiment again

If you want to repead the experiment you have to change the two hoses.



# Thank you for your attention!!!!!

